منابع مشابه
On metric spaces induced by fuzzy metric spaces
For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm, we present a method to construct a metric on a fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space. Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...
متن کاملRegularity Properties of Null-Additive Fuzzy Measure on Metric Spaces
We shall discuss further regularity properties of null-additive fuzzy measure on metric spaces following the previous results. Under the null-additivity condition, some properties of the inner/outer regularity and the regularity of fuzzy measure are shown. Also the strong regularity of fuzzy measure is discussed on complete separable metric spaces. As an application of strong regularity, we pre...
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملUniformities in fuzzy metric spaces
The aim of this paper is to study induced (quasi-)uniformities in Kramosil and Michalek's fuzzy metric spaces. Firstly, $I$-uniformity in the sense of J. Guti'{e}rrez Garc'{i}a and $I$-neighborhood system in the sense of H"{o}hle and u{S}ostak are induced by the given fuzzy metric. It is shown that the fuzzy metric and the induced $I$-uniformity will generate the same $I$-neighborhood system. ...
متن کاملOn the topology of D-metric spaces and generation of D-metric spaces from metric spaces
An example of a D-metric space is given, in which D-metric convergence does not define a topology and in which a convergent sequence can have infinitely many limits. Certain methods for constructing D-metric spaces from a given metric space are developed and are used in constructing (1) an example of a D-metric space in which D-metric convergence defines a topology which is T1 but not Hausdorff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2003
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700033785